Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter
نویسندگان
چکیده
Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.
منابع مشابه
Modified Gaussian Sum Filtering Methods for INS/GPS Integration
In INS (Inertial Navigation System) /GPS (Global Positioning System) integration, nonlinear models should be properly handled. The most popular and commonly used method is the Extended Kalman Filter (EKF) which approximates the nonlinear state and measurement equations using the first order Taylor series expansion. On the other hand, recently, some nonlinear filtering methods such as Gaussian S...
متن کاملGPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...
متن کاملTightly Coupled Integration of GPS-PPP and MEMS-Based Inertial System Using EKF and UKF
In this paper, an improved Precise Point Positioning GPS/MEMS-based integrated system is introduced for precise positioning applications. Un-differenced ionosphere-free linear combinations of carrier phase and code measurements are processed. Tropospheric delay, satellite clock, ocean loading, Earth tide, carrier-phase windup, relativity, and satellite and receiver antenna phase-center variatio...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کاملIntegration of Ppp Gps and Low Cost Imu
GPS and low-cost INS integrated system are expected to become more widespread as a result of the availability of low cost inertial Micro-Electro-Mechanical Sensors (MEMS). Currently most of the integration systems are based on the differential GPS (DGPS) to ensure the navigation performance. However with the requirements of the base station, the system cost and complexity are significantly incr...
متن کامل